
Equationally Correct Semantics (Extended Abstract)
Cameron Wong

Jane Street/Harvard University

USA

CCS Concepts: • Theory of computation→ Logic and
verification.

Keywords: dependent types, soundness, language semantics

ACM Reference Format:
Cameron Wong. 2022. Equationally Correct Semantics (Extended

Abstract). In Proceedings of . ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
We developed a new technique for systemically deriving

type-safe small-step operational semantics automatically

satisfying progress and preservation with respect to a typing

algorithm. All proofs and derivations have been mechanised

in the Agda proof assistant.

Our technique is an adaptation of the one pioneered by

Bahr and Hutton [1] for computing compilers. Following the

example of Pickard and Hutton [3], we choose a dependently-

typed setting to avoid troublesome partiality issues. We will

first describe how type soundness can be phrased as an equa-

tion, then use that equation to derive a small-step operational

semantics for a simple expression language.

2 Type Safety as an Equation
We seek to define a runtime semantics for a language, which

we quantify as the function step. Our first order of business
is to phrase our correctness condition as an equation relating

step to our other desired quantities, namely, type soundness.

The classic statement of type soundness is the twin theo-

rems of progress and preservation [2]. Colloquially, progress

states that “well-typed programs do not get stuck”, and

preservation states that “a program has the same type af-

ter each evaluation step”. The latter seems like a promising

equation candidate, as it is a statement equating two things

— namely, the type of an expression before and after each

step.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

, ,
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

We specify the target language by converting its typing

judgment Γ ⊢ 𝑒 : 𝜏 into an Agda function

typeof : Exp → Maybe Type

with the property typeof 𝑒 = 𝜏 iff ∅ ⊢ 𝑒 : 𝜏 .
Next, consider syntactic values, which cannot be stepped.

Typically, this is expressed by having the step function re-

turn a partial value such as a Maybe. In an equation, how-

ever, we will have to branch on the result, which becomes

unwieldy. Instead, we parameterize the Exp datatype by

whether it can be stepped.

data Steppable : Set where

Value: Steppable

Steps: Steppable

data Exp : Steppable → Set where

...

step : (𝑒 : Exp Steps) → ∃𝑆.Exp 𝑆

Notice that step now returns an existential Exp 𝑆 , as we

cannot know whether the result can be evaluated further.

There is a further issue of attempting to step ill-typed

programs. In the mechanisation, this is addressed by fur-

ther amending step to also take a proof that its argument is

well-typed. As Agda enforces that functions are total, such

a function actually serves as a proof of the progress theo-

rem. This obscures the process, however, so we will elide it

from the type of step and instead merely include it as an

assumption.

All the pieces are in place, then, to relate progress (step) to
the typing judgment (typeof) via the preservation equation:

typeof 𝑒 = typeof (step e) (1)

where 𝑒 : Exp CanStep.

3 The Derivation
3.1 Target Language
Our target language for this demonstration is the simple,

typed expression language presented in Figure 1
1
.

1
We do not use the usual dependently-typed technique of parameterizing

Exp with its type, as it would trivialize the typeof function
2
The actual implementation in Agda is somewhat more complex, and is

simplified for presentation. Agda does not support Haskell-style case ex-
pressions, nor can it, in general, decide equality or inequality of Sets.
Instead, we use the usual fold operator over the Maybe type and use a

regular Agda variant to represent N and Bool.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, , Wong

data Exp : Steppable → Set where

boolVal : Bool → Exp Value

intVal : N→ Exp Value

add : Exp 𝑆 → Exp Steps

if_ : Exp 𝑆𝑛 → Exp 𝑆1 → Exp 𝑆2 → Exp Steps

data ⊢_:_ : Exp 𝑆 → Type → Set where

typ -bool : ⊢(boolVal b):Bool

typ -nat : ⊢(intVal i):N

typ -add : ⊢ 𝑒1 : N→⊢ 𝑒2 : N→⊢ (add 𝑒1 𝑒2) : N
typ -if : ⊢ 𝑒 : Bool →⊢ 𝑒1 : 𝜏 →⊢ 𝑒2 : 𝜏 →⊢ (if 𝑒 𝑒1 𝑒2) : 𝜏

Figure 1. Target language and typing rules

typeof (add 𝑒1 𝑒2) =

case (typeof 𝑒1, typeof 𝑒2)

of (Just N, Just N) -> Just N

| _ -> Nothing

typeof (if_ 𝑒 𝑒1 𝑒2) =

case (typeof 𝑒, typeof 𝑒1, typeof 𝑒2)

of (Just Bool , Just 𝜏1, Just 𝜏2) ->

if 𝜏1 = 𝜏2

then Just 𝜏1

else Nothing

| _ -> Nothing

Figure 2. Definition of typeof, selected cases
2

Our goal is to define the function step satisfying equation
1. As per Bahr and Hutton [1], we will proceed by structural

induction on 𝑒 , evaluating the left hand side of equation

1 and seek to transform it into an expression of the form

typeof 𝑐 , then take step e = 𝑐 as a definition for that case

of step.

3.2 Semantics Calculation
Let ⊢ 𝑒 : 𝜏 . For brevity, we show only two representative

cases.

Case: 𝑒 = add 𝑒1 𝑒2, where 𝑒1 : Exp CanStep

We begin by applying the definition of typeof from Figure

2:

typeof (add 𝑒1 𝑒2)

= ⟨definition of typeof⟩
case (typeof 𝑒1, typeof 𝑒2) ...

We are immediately stuck, as we cannot expand typeof 𝑒1
any further. To proceed, we have no choice but to cite the

inductive hypothesis:

case (typeof 𝑒1, typeof 𝑒2) ...

= ⟨inductive hypothesis on typeof 𝑒1⟩

case (typeof (step 𝑒1), typeof 𝑒2) ...

We finally apply the definition of typeof in reverse:

case (typeof (step 𝑒1), typeof 𝑒2) ...

= ⟨definition of typeof⟩
typeof (add (step 𝑒1) 𝑒2)

This is now of the form typeof(add 𝑒1 𝑒2) = typeof 𝑐 ,

namely, 𝑐 = add (step 𝑒1) 𝑒2. We wrap up by defining step
for this case:

step (add 𝑒1 𝑒2) = add (step 𝑒1) 𝑒2

We note that this rule specifies “left-first” evaluation se-

mantics. In fact, if both 𝑒1 and 𝑒2 can be stepped, we have the

choice of invoking the inductive hypothesis on 𝑒1, 𝑒2 or both,

corresponding to left-first, right-first or parallel evaluation

respectively.

Case: 𝑒 = if_ (boolVal true) 𝑒1 𝑒2

As with before, we begin by expanding typeof:

typeof (if_ (boolVal true) 𝑒1 𝑒2)

= ⟨definition of typeof⟩
case ...

of (Just Bool , Just 𝜏1, Just 𝜏2) ->

if_ 𝜏1 = 𝜏2

then Just 𝜏1

else Nothing

...

We are once again stuck. Unlike before, we have made

no assumptions about whether 𝑒1 or 𝑒2 are steppable, so we

cannot cite the inductive hypothesis.

By inversion on the assumption ⊢ 𝑒 : 𝜏 , we can conclude

that ⊢ 𝑒1 : 𝜏 and ⊢ 𝑒2 : 𝜏 , and thus typeof𝑒1 = typeof𝑒2 = 𝜏 .

Then:

case ...

of (Just Bool , Just 𝜏1, Just 𝜏2) ->

if_ 𝜏1 = 𝜏2

then Just 𝜏1

else Nothing

...

= ⟨assumption⟩
if 𝜏 = 𝜏 then Just 𝜏 else Nothing

= ⟨evaluation step⟩
Just 𝜏

= ⟨assumption⟩
typeof 𝑒1

Here, we needed to make a human judgment of which of

𝑒1 or 𝑒2 to evaluate to.

3.3 Implementation
The example language semantics, along with their proofs of

correctness, have been fully mechanised in Agda, available at

https://github.com/CT075/calculated-semantics. This

Equationally Correct Semantics (Extended Abstract) , ,

includes the unsimplified step fully witnessing progress and
a proof that the typeof function respects the static typing

rules.

4 Reflection and Future Work
In summary, we have seen that elementary, equational rea-

soning can be used to discover an operational semantics for

a type system. As with Bahr and Hutton [1], our proof of

soundness falls out of the derivation process.

An unsatisfying part of the derivation is that, ultimately, it

requires a human to make decisions. For example, choosing

which branch of the if_ variant corresponds to true. This
has consequences on evaluation order, as previously noted,

but also on correctness. Consider that, as presented, there

is nothing associating the add variant with the (+) operator

on naturals beyond our human intuition, which presents

an obstacle to fully automating this process. We hope that

the addition of a further language specification, such as a

denotational semantics, may help resolve this.

A logical next step would be to apply this technique to a

language with a more sophisticated typing algorithm. As a

first step in this direction, we hope to derive a semantics for

System 𝐹𝜔 , the higher-kinded polymorphic lambda calculus.

References
[1] Bahr, P., and Hutton, G. Calculating Correct Compilers. Journal of

Functional Programming 25 (Sept. 2015).
[2] Harper, R. Practical Foundations for Programming Languages (2nd. Ed.).

Cambridge University Press, 2016.

[3] Pickard, M., and Hutton, G. Calculating Dependently-Typed Com-

pilers. Proceedings of the ACM on Programming Languages 5, ICFP (Aug.

2021).

	1 Introduction
	2 Type Safety as an Equation
	3 The Derivation
	3.1 Target Language
	3.2 Semantics Calculation
	3.3 Implementation

	4 Reflection and Future Work
	References

