
Whirlwind Introduction to Subtyping

Cameron Wong

The purpose of this text is to provide a high-level overview of the motivations
behind and basic theory of a subsumptive subtyping semantics over a simply-
typed lambda calculus similar to ML. In the interest of brevity, we will elide
a formal discussion of syntax forms, dynamics, etc, and simply discuss what
properties this system should have if embedded into ML. As such, you should
have some basic knowledge of ML and the formalities of ML-like typesystems.

Disclaimer: The few “proofs” given are not completely rigorous. The biggest
elephant in the room is that we have not formally defined the behavior of our
system, and instead nebulously pretend that we’ve grafted things onto OCaml
(or SML). The sections marked as “proof” are intended as sketches that may be
superimposed onto a formal system with similar rules. Please contact me if you
spot an error; a major reason I set out to write this was to confirm to myself
that I properly understand these concepts.

1 Motivation
1.1 Typesafe Lists
Consider the function hd : 'a list -> 'a that returns the first element of a
list. Typically, this function is only defined on non-empty lists, raising some
form of error when given an empty input. One way around this is to instead use
a type such as hd_opt : 'a list -> 'a option, which forces the programmer
to handle the empty case explicitly. However, this is no better than pattern
matching on the list originally, and indeed only serves to delay the boilerplate
in cases in which the list is provably non-empty. For example, consider the
following (contrived) example:

let v : int list = map foo [1,2,3,4] in
match hd_option v with
| Some x -> do_something x
| None -> assert false

It is a feature of ML-inspired languages that, in cases like this, we generally have
no choice but to pattern match and think about what to do when hd_option v
is None. In this case, however, we know that the value v is non-empty – map f is
a function returning a list of the same length as its input, so using this function

1

on [1,2,3,4] gives a list of length exactly 4. However, this fact isn’t actually
recorded in the type of map anywhere – it is opaque to the typesystem. Because of
this, the typesystem cannot prove that v is non-empty, and so the “safe” thing to
do is pattern match and explicitly mark the extraneous case as unreachable. As
you might expect, this boilerplate becomes annoying very quickly, and so nearly
every standard library for these languages will provide unsafe function wrappers
for this pattern (Option.valOf in OCaml, for example). But in using these
functions, we remove the safety net provided by the compiler and typesystem,
and invite runtime exceptions that such constructs are designed to avoid (see:
option types vs pervasive use of null in other languages).

Instead, it would be ideal to restrict the type of hd to only act on lists that
are inhabited, so the compiler will throw an error if we attempt to blindly take
the first element of a potentially empty list. By lifting the information about
whether a list is empty into the typesystem, we can then allow the typechecker
to construct proofs that a given invocation of hd is definitely safe (if we adjust
other functions to match, of course).

1.2 Attempt 1: Generalized Algebraic Datatypes
A somewhat commonly-seen “solution” to this issue that you might see uses
GADTs to attach type information to the particular constructor. For example:

type empty
type nonempty

type ('a, _) list =
| Nil : ('a, empty) list
| (::) : 'a * ('a, 'b) list -> ('a, nonempty) list

Then, we can note that map does not change the emptiness of its argument by
type-annotating it like so:

val map : ('a -> 'b) -> ('a, 'e) list -> ('b, 'e) list

where, because the output type 'e must be the same as the input type 'e, we
know that if the input list is nonempty, the output must also be nonempty.

This works great if we know that the output emptiness is fixed, or is the same
as the input list. However, we begin to run into issues where the relationship
between the input and output emptiness is not constant or identity. For example,
how would we encode the type of append?

val append: ('a, 'e1) list -> ('a, 'e2) list -> ('a, ???) list

In fact, we do know something about the output type in this case – the output
of append is empty iff both inputs are. However, ML-style typesystems lack
support for type-level lambdas, and so we have no way to express this type
without employing more trickery.

2

https://en.wikibooks.org/wiki/Haskell/GADT

Even worse, what about functions where the output has no relation to the input?

val filter: ('a -> bool) -> ('a, 'e) list -> ('a, ???) list

Here, we’re completely up the creek – there’s no way for us to know whether the
filtered list is empty.

One way around this is to use higher-ranked polymorphism and continuation
passing style to ‘capture'' the output. By making the type offilter‘ look
like

val filter: ('a -> bool) -> ('a, 'e) list ->
(forall b . ('a, b) list -> 'c) ->
'c

we can force consumers of this function to provide a handler that is able to
handle both cases. The extra function argument at the end is the “continuation”
that consumes the list output by filter.

This is stylistically jarring, however, and ML-style languages generally don’t
support or require jumping through some hoops to encode rank N types.

1.3 Attempt 2: Sum Types
The fundamental problem with append and filter in the previous example
is that, in different cases, these functions must return different types. This is
generally forbidden1, and so we’re stuck.

On the other hand, we have a mechanism by which we can join two disparate
types – sum types! A generic list is either an empty list, or an inhabited list. So
we come up with

type 'a emptylist = nil
and 'a inhablist = (::) of 'a * 'a list
and 'a list = E of 'a emptylist

| N of 'a inhablist

and so we can express functions like filter by returning an 'a list, whereas
functions like hd must take in 'a inhablist as input.

This is a lot of code for a relatively simple idea, though! In addition to the
mutually recursive types, here’s an example of using this type:

let rec map f L =
match L with
| E nil -> E nil
| N (x :: xs) -> N (f x :: map f xs)
1There are exceptions stemming from type shenanigans (oftentimes via GADTs!), but this

isn’t one of them.

3

https://wiki.haskell.org/Rank-N_types

Notice the extra uses of E and N. This adds clutter without really adding
meaning, and gets increasingly cumbersome as we write more complex functions.
In addition, you may have noticed that this doesn’t even solve the original
problem! When we call map f [1,2,3,4], we get back a value of type list,
which doesn’t tell us that the list is non-empty!

Really, what we want is a way to express that a non-empty list is the same as
a regular list, but with some extra information (particularly, that the list is
non-empty).

2 The Subtyping Relation
Let us introduce a new judgment into our typesystem. Let τ1 <: τ2 (pronounced
“extends”, as in “τ1 extends τ2”) be a judgment claiming pretty much exactly
what we said above, that a value of type τ1 is equivalent to a value of type τ2,
with some more specific information attached. This leads to the following typing
rule:

Γ ` e : τ1 τ1 <: τ2

Γ ` e : τ2

This is known as the subsumption rule, where we allow terms to automatically
“upcast” from a subtype to a supertype. Using our intuition about what <:
means, this should make sense – if a τ1 is a τ2 with some extra information, then
we should be able to recover the τ2 by discarding that extra specificity.

Another important property to maintain with this relation is its transitivity. In
fact, if we are only concerned with typing specific expressions, then this property
is irrelevant, as we can already show that e : τ1, τ1 <: τ2 and τ2 <: τ3 implies
e : τ3.

Exercise: Give a derivation showing this.

When discussing the types themselves, however, it is often convenient to add a
rule stating this directly:

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

To solve our list problem, then, we want 'a nlist to be a subtype of 'a list,
and re-structure all our functions accordingly. Before we address this directly,
however, we need to explore how, exactly, this relation should behave.

3 Structural Subtyping
In any particular subtyped calculus, we might consider baking in forms of
semantic subtyping, where the relationship between two given types is based

4

on the fundamental properties of our primitive types. For example, convention
claims that N, the set of natural numbers, is a subset of R, the set of reals. Then,
assuming we have analogous types nat and float in our language (using floating
point numbers to approximate the reals), we might decide that nat <: float2.

However, in the absence of such specificity about our basic types, let us instead
examine what properties might be derived structurally, examining only the form
of the types themselves.

3.1 Products
Consider the following two types:

type t1 = { l1 : a type t2 = { l1 : a
; l2 : b ; l2 : b
} ; l3 : c

}

(note that we’re using labeled products, otherwise known as “records” instead of
standard tuples, because it makes the semantics much clearer)

In keeping with our intuition that “the subtype is the same as the supertype
but with more information”, we notice that any value of type t2 has all the
fields of t1 with the same types, but also has some data l3. We thus add a
“width-subtyping” rule for records:

{`1 : τ1, . . . , `n : τn, . . . } <: {`1 : τ1, . . . , `n : τn}

saying that a record ρ1 is a subtype of another record ρ2 when ρ1 contains all
the same fields+types as ρ2.

3.2 Sums
Similarly, suppose we have the following two labeled variants:

type t1 = L1 of a type t2 = L1 of a
| L2 of b | L2 of b

| L3 of c

Which direction should the subtyping go? We might claim that a value of
type t2 contains “extra” information compared to t1 by noting that t2 has an
extra variant, so a t2 is a t1 but may be different. However, this is wrong, as
demonstrated by the following snippet:

2This may seem alarming – nat is certainly not a subset of float on any real computer
architecture! We will gloss over this issue with regards to subsumption for now, as it is largely
inconsequential without discussion of syntax forms and dynamic semantics. Attempting to
address this leads to “coercive” subtyping, where casts must be made explicit.

5

match v with
| L1 x -> do_something x
| L2 y -> do_something_else y

If t2 <: t1 truly, then it would be valid for v to be of the form L3 z, as this is
certainly of type t2 and therefore type t1. But this would be disastrous, as the
match statement does not specify what to do in the L3 case!

We conclude by noting that the other direction is fine –

match v with
| L1 x -> do_something_1 x
| L2 y -> do_something_2 y
| L3 z -> do_something_3 z

If v : t1, then we know that it is restricted to be an L1 or L2 variant, so this
match statement can never get stuck. The “extra information” gained from
having a t1 over a t2, then, can be viewed as the information that a t1 is not
an L3 variant! So t1 <: t2.

Another way to view this is that, in many ways, sum types are “flipped around”
compared to product types. Categorically speaking, we claim that sums and
products are dual to each other (in fact, you’ll often find sums referred to as
“coproducts”, to make this relationship explicit). It makes sense, then, that a
“bigger” sum is related to a “smaller” sum in the opposite of the way that bigger
and smaller products relate.

4 Variance
The next topic to consider relates to our type constructors. The exact question
we will be addressing is

When is τ1 t <: τ2 t, for a particular type constructor t?

To answer this question, we typically must examine not only the internals of the
constructor t, but also the relationship between τ1 and τ2. The way that the
relationship between τ1 and τ2 affects the relationship between τ1 t and τ2 t is
known as variance.

4.1 Lists
As we began this discussion by talking about lists, it seems only right that we
consider first the variance properties of the (idealized) type 'a list.

The naive answer might be that τ1 list <: τ2 list when τ1 <: τ2. This is actually
the correct thing to do – if τ1 <: τ2, then we can view all elements of a τ1 list as
a τ2, thus giving us a τ2 list, so we might gain the rule

6

τ1 <: τ2

τ1 list <: τ2 list

In fact, we can generalize this to “containers” in general.

Theorem (Covariance of sources) If there exists a function of most general
type ∀a.(a t → a) that returns a value for at least one input, then τ1 t <: τ2 t
implies τ1 <: τ2.

Proof.

Let f, v, t, τ1, τ2 be such that f : ∀a.(a t → a), v : τ1 t and τ1 t <: τ2 t.

By subsumption, v : τ2 t, so f v : τ2.

Alternatively, f v : τ1.

Because f is universally quantified, it cannot rely on any properties of τ1 or τ2.
But then, f v is arbitrary. In particular, any object of type τ1 can be written as
f v for an appropriate v.

But f v is the same object regardless of whether v is viewed as a τ1 t or a τ2 t,
so we must be able to view arbitrary objects of type τ1 as objects of type τ2.

4.2 Functions
Functions are a strange case, because a function arrow really has two type
variables, the input and the output. We’ll examine these one at a time.

Consider types τ → τ1 and τ → τ2, where τ is fixed. If τ is a type inhabited with
an object σ, then certainly λf : fσ is a function of type ∀a.((τ → a) → a), so
by the above we know that function arrows should be covariant in their second
argument. In fact, by a slightly modified argument, we can show this even when
τ is the empty type ⊥ (hint: suppose that there existed some function of type
(⊥ → τ1) → ρ and consider what behavior this function could possibly have).

The first argument, on the other hand, actually flips this behavior. If we have a
function of type τ1 → τ , we’re eventually going to want to call it on a value of
type τ1 (formally we might say that we are allowed to eliminate this function by
passing it an input). For this to be safe, we must know that any subtype of the
type τ1 → τ must be able to safely handle a τ1. But this means that subtypes of
τ1 → τ must have supertypes of τ1 on the left (as otherwise they might perform
an operation that is only implemented by the subtype). This gives us the rule

τ2 <: τ1

τ1 → τ <: τ2 → τ

This phenomenon, in which we reverse the relationship between τ1 and τ2 to
τ1 t and τ2 t is known as contravariance.

7

By duality, we might expect to be able to produce a similar theorem to the
one given above, perhaps by the existence of a function of type ∀a.(a → a t).
Unfortunately, this doesn’t quite work – the function λx.[x] has type ∀a.(a →
a list), but lists are definitely not contravariant.

Proposition (Contravariance of sinks) If there exists a type c such that
there exists a function of type f such that f : ∀a.(a → a t → c), then τ1 t <: τ2 t
implies τ2 <: τ1.

This is marked as a proposition, rather than a theorem, because it is false as
stated. For example, the function λ_1.λ_2.() has type ∀a.∀b.(a → b → unit),
which of course specializes to ∀a.(a → a t → c) for any t. It may be enough to
assert that f “meaningfully uses” its arguments, but this is difficult to formalize.
That said, I’m not actually sure that this is true either – if you can prove it
(even semi-informally in our ML-like world), please let me know!

4.3 Mutable References
It turns out that mutable state (important to imperative programming) interacts
in an interesting way with subtyping variance. Consider the types τ1 ref and
τ2 ref , referring to the types of mutable reference cells.

Notice that the dereference function ! has type ∀a.(a ref → a), so by covariance
of sources (I promise I will explain the terms “source” and “sink” shortly), we
have that τ1 ref <: τ2 ref implies τ1 <: τ2.

However, τ1 <: τ2 is not sufficient to conclude that τ1 ref <: τ2 ref . Let A <:
B be types, and consider the following code:

let magic (r: A ref) (v: B) : A =
(r : B ref) <- v;
!r

Remember that the rule of subsumption means that annotating r as type B ref
is a no-op (just a hint to the compiler). But !r (= v) is definitely of type A, as
r : A ref, even though v is already of type B! The only way this is safe is if B
<: A.

In fact, we need both directions to assert that τ1 ref <: τ2 ref . This can only
happen if τ1 and τ2 are the same type up to some definition of “same” (reordering
of labels, etc)3. This property is known as invariance.

One way to think of covariance and contravariance is to discuss what you can
do with an 'a t. If having an 'a t possibly gives you an 'a, it is called a
source, and is therefore covariant by the proof above. Otherwise, if an 'a t
consumes an 'a, then it is called a sink, which is contravariant using the same

3We should be careful that we don’t claim that τ1 <: τ2 and τ2 <: τ1 implies τ1 ∼= τ2
(isomorphism) unduly, as isomorphism often works strangely with subsumptive subtyping. For
example, (a, (b, c)) ∼= ((a, b), c), but in these cases the term v.0 is ambiguous. The difference is
technical and difficult to reason about without formally defining semantics.

8

reasoning as with function arguments. However, references are both a source (by
dereferencing) and a sink (by writing a value to the cell). We don’t run into
this issue with immutable containers because growing a container necessarily
changes the type of the (resulting) container, but writing a value to a ref cell
doesn’t retroactively change its type.

4.4 Bivariance
Thus far, we’ve seen examples of both covariant and contravariant type construc-
tors, along with a type constructor that is both (invariant). You may then ask
whether there exists a type of variance that is neither – that is, if there exists
some t such that τ1 t <: τ2 t regardless of the relation between τ1 and τ2.

In fact, there is! This is the case when an object of type τ t is entirely unrelated
to objects of type τ . This is most often seen with phantom type variables
intended to aid typechecking. Such types are known as bivariant in the given
input.

We can show that this is the only possibility for a type to be bivariant by
appealing to the source theorem and sink proposition above. Regarding the
latter case, if τ1 t <: τ2 t always, then we can sink any value into a value of type
τ t (for any τ !). This can only possibly be safe if sinking a value is a no-op.

Exercise: Provide a similar argument to the above without the source theorem
to show that a bivariant type constructor cannot be a source. (Hint: let τ = ⊥)

5 Bounded Quantification
You may notice that, after all that, we still haven’t solved the problem we
initially set out to! Even if we construct a type 'a nlist such that 'a nlist
<: 'a list, we still can’t tell the typechecker that map only returns an nlist
if given an nlist!

The solution is to adjust how we approach polymorphism. Previously, ML-style
languages supported only unbounded quantification in their types. Polymorphism
was all-or-nothing; either you had a specific type or you must be generic over all
possible types. This is denoted via the implicit ∀ seen in polymorphic ML types.
However, now we have interesting things to say about types and how they relate
to each other, which in turn enrichens our type language.

In particular, we can now have types of the form ∀{t : t <: s}.τ and ∀{t : s <: t}.τ ,
where we can upper- or lower-bound the range of types we are quantifying over.

This allows us to solve our list problem relatively elegantly via a combination of
subtyping and GADTs by declaring types unknown, nonempty <: unknown and
empty <: unknown. Then map can have type ∀{e : e <: unknown}.∀a.((a →
b) → (a, e)list → (b, e)list).

9

Exercise: Show that you can express the type of append under this scheme.
You may assume any reasonable extension of the syntax to, say, provide an upper
and lower bound at the same time, or to allow multiple bounds to apply at once.

Many modern-day subtyping schemes allow quantification in this way. For
example, in Java, there exists a type List<? extends T> for ∀{t : t <: T}.t list
and List<? super T> for ∀{t : T <: t}.t list. However, adding expressiveness
to a type-level language often leads to trouble. In fact, typechecking a system
with bounded quantification in both directions is undecidable.

References
[1] Pierce, Benjamin C. Types and Programming Languages. The MIT Press,
2002.

[2] Reynolds, John C. “Design of the Programming Language Forsythe.” Algol-
like Languages, 28 June 1996.

[3] Grigore, Radu. “Java Generics Are Turing Complete.” ACM SIGPLAN
Notices, vol. 52, no. 1, 1 Jan. 2017, pp. 73–85.

10

	Motivation
	Typesafe Lists
	Attempt 1: Generalized Algebraic Datatypes
	Attempt 2: Sum Types

	The Subtyping Relation
	Structural Subtyping
	Products
	Sums

	Variance
	Lists
	Functions
	Mutable References
	Bivariance

	Bounded Quantification
	References

