(Why | How to) study types(? | .)

98-317 Hype for Types

August 27, 2019

Why study types?

Why study types?

» They are interesting in their own right

Why study types?

» They are interesting in their own right

» They provide benefits to programmers

“If it compiles, it works.”

“If it compiles, it works.”

» It would be nice if this were true

“If it compiles, it works.”

» It would be nice if this were true

> Types bring us closer to this

Easy bugs prevented by using types

» Undefined variable

» Incorrect argument passed a function

Sentinel values

“Array.prototype.indexOf returns the first index at which a given
element can be found in the array, or -1 if it is not present.”
(MDN)

Data races

Data races

» One mutable memory location

Data races

» One mutable memory location

» More than one concurrent writer to this memory location

Data races

» One mutable memory location
» More than one concurrent writer to this memory location

> Prevent statically by tracking mutability

How to study types.

How to study types.

How should a programming language be defined?

Through code

“s is a program in the language L if P(s) doesn’t output any
errors.”

Through a written spec

“s is a program in the language L if the spec S defines the
semantics of s.”

Through judgements

> e: 7, “e has type 77

Through judgements

> e: 7, “e has type 77
> 3:int

Through judgements

» e:7, “e has type 7”7
> 3:int

» “foo” :str

The structure of an inference rule

J1 Ja

Some example inference rules

Some example inference rules

n € 7z

n:int

Some example inference rules

n € 7z

n:int

Rules with more premises

e1 :int es :int

e1 +ey:int

Rules with more premises

ey :int ey @ int
e1 +ey:int
e : str eo . str

e1 N\ eg :str

What to do about this?

let x = €1 in eg

What to do about this?

let x = €1 in eg

letx=2+3inx+zx=10

Variables, scope, and context

» Before: e: 7

Variables, scope, and context

» Before: e: 7
» Now: 'Fe: T

The old rules, upgraded

n € 7z
I'Fn:int
IE . str

I'keg:int I'key:int
I'keg +eg:int

I'teq:str 'k ey :str
I'Fep Aeg:str

The let rule

I'kFe:m Iz:mbey:n

I'kletx=e€1ines:m

The variable rule

e:thx:7

What’s the type?

-k let z = len(“fo0") inx +3: 7

A proof tree

3eZ
- “foo" : str x:intkx:int x:intk 3 :int
- Flen("“foo”) : int wxintkE x4+ 3:int

-Flet z = len("foo") in x 4+ 3 :int

