
(Why | How to) study types(? | .)

98-317 Hype for Types

August 27, 2019

Why study types?

I They are interesting in their own right

I They provide benefits to programmers

Why study types?

I They are interesting in their own right

I They provide benefits to programmers

Why study types?

I They are interesting in their own right

I They provide benefits to programmers

“If it compiles, it works.”

I It would be nice if this were true

I Types bring us closer to this

“If it compiles, it works.”

I It would be nice if this were true

I Types bring us closer to this

“If it compiles, it works.”

I It would be nice if this were true

I Types bring us closer to this

Easy bugs prevented by using types

I Undefined variable

I Incorrect argument passed a function

Sentinel values

“Array.prototype.indexOf returns the first index at which a given
element can be found in the array, or -1 if it is not present.”
(MDN)

Data races

I One mutable memory location

I More than one concurrent writer to this memory location

I Prevent statically by tracking mutability

Data races

I One mutable memory location

I More than one concurrent writer to this memory location

I Prevent statically by tracking mutability

Data races

I One mutable memory location

I More than one concurrent writer to this memory location

I Prevent statically by tracking mutability

Data races

I One mutable memory location

I More than one concurrent writer to this memory location

I Prevent statically by tracking mutability

How to study types.

How should a programming language be defined?

How to study types.

How should a programming language be defined?

Through code

“s is a program in the language L if P (s) doesn’t output any
errors.”

Through a written spec

“s is a program in the language L if the spec S defines the
semantics of s.”

Through judgements

I e : τ , “e has type τ”

I 3 : int

I “foo” : str

Through judgements

I e : τ , “e has type τ”

I 3 : int

I “foo” : str

Through judgements

I e : τ , “e has type τ”

I 3 : int

I “foo” : str

The structure of an inference rule

J1 J2 . . . Jn

J

Some example inference rules

n ∈ Z
n : int

“...” : str

Some example inference rules

n ∈ Z
n : int

“...” : str

Some example inference rules

n ∈ Z
n : int

“...” : str

Rules with more premises

e1 : int e2 : int

e1 + e2 : int

e1 : str e2 : str

e1 ∧ e2 : str

Rules with more premises

e1 : int e2 : int

e1 + e2 : int

e1 : str e2 : str

e1 ∧ e2 : str

What to do about this?

let x = e1 in e2

let x = 2 + 3 in x+ x⇒ 10

What to do about this?

let x = e1 in e2

let x = 2 + 3 in x+ x⇒ 10

Variables, scope, and context

I Before: e : τ

I Now: Γ ` e : τ

Variables, scope, and context

I Before: e : τ

I Now: Γ ` e : τ

The old rules, upgraded

n ∈ Z
Γ ` n : int

Γ ` “...” : str

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : str Γ ` e2 : str

Γ ` e1 ∧ e2 : str

The let rule

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

The variable rule

Γ, x : τ ` x : τ

What’s the type?

· ` let x = len(“foo”) in x+ 3 : τ

A proof tree

· ` “foo” : str

· ` len(“foo”) : int

·, x : int ` x : int

3 ∈ Z
·, x : int ` 3 : int

·, x : int ` x+ 3 : int

· ` let x = len(“foo”) in x+ 3 : int

