
Homework 01

98-317 Hype for Types

Due: September 3, 2019 23:59 ET

1 Introduction

1.1 Preliminaries

Welcome to the first homework of 98-317 Hype for Types.

We have a course website, https://hypefortypes.github.io. This will be the place we
distribute homeworks and slides. It also contains our course policy, which we ask you to
read and uphold in its entirety.

We have a Piazza, https://piazza.com/class/jzrgppibs613tb. This will be the place
for you to ask questions about the course, the homeworks, the lectures, etc. You can also
help answer other people’s questions. The instructors will be active on Piazza, and will use
it to announce things about the course.

We will probably have an Autolab soon. This will probably be the place where homeworks
are handed in. If and when we get an Autolab, it will be posted on the course website,
and we will make an announcement on Piazza. If the strategy for handing in homeworks
turns out to not include using Autolab, we will make an announcement to this effect on
Piazza.

1.2 Getting this homework

1. Navigate to the course website

2. Download the appropriate tar file

3. Move the tar file to an empty directory

4. Extract the contents of the tar file with tar -xf handout.tar

1.3 Handing in this homework

1. Type make handin.tar

2. Either upload handin.tar to Autolab or send an email

1

https://hypefortypes.github.io
https://piazza.com/class/jzrgppibs613tb

• to azdavis@andrew.cmu.edu,

• with subject “98-317 HW01”,

• with attachment handin.tar

1.4 Layout of this homework

After getting the homework, the structure of the homework directory should be the follow-
ing.

• Makefile defines targets for make. Type make for information. As an example, type
make handin.tar to create a tar file ready for handing in.

• handin contains the files which will be handed in.

• pdf contains this writeup.

• support contains support code, which is freely usable in your implementation. The
.sig files serve as documentation for the support code.

• tests/Sandbox.sml contains any code you want. When a repl is created with make

repl, code defined in the sandbox will be loaded into the repl, along with all of the
code in support and handin.

• tests/Tests.sml contains tests. Run the tests with make test.

2 synthtype

In this homework, you will be translating inference rules that we give you into code that
implements these inference rules. Specifically, you will be writing cases of the synthtype

function, which takes in an expression in the E# language, and outputs a type for this
expression, if it has one. Consult section 3 for more information about the E# language.
Section 3.3 is most relevant for implementing synthtype.

2.1 Str, Plus, Len

In handin/Statics.sml, in synthtype, define the cases for Str, Plus, and Len. Each
one of these cases is very similar to another respective case which we have already defined.
For instance, the Plus case is very similar to the Concat case, which has already been
defined.

2.2 Let

In handin/Statics.sml, in synthtype, define the case for Let.

Unlike the previous cases, in this case, the context must be modified. In the inference rules,
Γ is the context which contains information about the variables in scope and their types. In
the code, we represent this context with a variable named ctx.

2

mailto:azdavis@andrew.cmu.edu

The operations permitted on a context are detailed in support/CTX.sig. Notably, given

• an existing context ctx,

• a variable x, and

• a type t,

a new context that contains all of the information from the old ctx, plus the information
that the variable x has type t, can be created with the code

Ctx.add x t ctx

To reiterate:

val ctx: Ctx.t = ... (* a context *)

val x: string = ... (* a variable *)

val t: Typ.t = ... (* a type *)

val newCtx: Ctx.t = Ctx.add x t ctx

Note that, in this code example, ctx is not “updated” to hold the information that x has
type t. Instead, a new context named newCtx is created. This new context holds all the
information that was in ctx, plus the new information.

Because this case is harder than the previous cases, it is optional. However, we still encourage
you to give it a try, and remember you can ask the instructors for help if you are stuck.

3 The E# Language

“E#” is pronounced “Eee Sharp”.

3.1 Types

τ ::= int integers

| str strings

3.2 Expressions

e ::= x | y | z | . . . variables

| 1 | 2 | 3 | . . . integer literals

| “” | “foo” | “bar” | . . . string literals

| e1 + e2 integer addition

| e1 ∧ e2 string concatenation

| len(e1) string length

| toStr(e1) conversion to string

| let x = e1 in e2 variable binding

3

https://www.youtube.com/watch?v=Qskm9MTz2V4

3.3 Statics

We’ve given names to each of the inference rules for your convenience.

Γ, x : τ ` x : τ
Var

n ∈ Z
Γ ` n : int

Int
Γ ` “...” : str

Str

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
Plus

Γ ` e1 : str Γ ` e2 : str

Γ ` e1 ∧ e2 : str
Concat

Γ ` e1 : str

Γ ` len(e1) : int
Len

Γ ` e1 : int

Γ ` toStr(e1) : str
ToStr

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
Let

3.4 Dynamics

The dynamics shown here have been implemented for you in support/Dynamics.sml. It
is presented here only to complete the formal definition of E#, and involves concepts and
notation not discussed in class.

The judgement being defined here are

• e val, which holds when the expression e is a value and cannot be evaluated further.

• e 7→ e′, which holds when e can be evaluated in 1 step to the new expression e′.

Together with the statics, we can prove certain safety properties about the E# language:

Progress If Γ ` e : τ , then e val or e 7→ e′.

Preservation If Γ ` e : τ and e 7→ e′, then Γ ` e′ : τ .

We use the notation [e/x]e′ to mean “the expression e is substituted in for wherever the
variable x appears in the expression e′”. We often pronounce [e/x]e′ as “e for x in e′”.

The dynamics rules might be a bit confusing, given that we didn’t talk at all about dynamics
in the lecture. The especially confusing dynamics rules are the ones where the arguments
to the function-like constructs (+, ∧, len, and toStr) are values. The idea is, when the
arguments are values, we want to take a step to “the result.” To emphasize, the notation in
those rules isn’t the greatest, so it might be confusing. If you’re interested in what’s going
on here and want to know more, ask us!

4

n ∈ Z
n val

Int-Val
“...” val

Str-Val
e1 7→ e′1

e1 + e2 7→ e′1 + e2
Plus-LHS

e1 val e2 7→ e′2
e1 + e2 7→ e1 + e′2

Plus-RHS
e1 val e2 val e1 = n1 e2 = n2

e1 + e2 7→ (n1 + n2)
Plus-Res

e1 7→ e′1
e1 ∧ e2 7→ e′1 ∧ e2

Concat-LHS
e1 val e2 7→ e′2
e1 ∧ e2 7→ e1 ∧ e′2

Concat-RHS

e1 val e2 val e1 = “...” e2 = “...”

e1 ∧ e2 7→ “......”
Concat-Res

e1 7→ e′1
len(e1) 7→ len(e′1)

Len-Arg

e1 val e1 = “...” |“...”| = n

len(e1) 7→ n
Len-Res

e1 7→ e′1
toStr(e1) 7→ toStr(e′1)

ToStr-Arg

e1 val e1 = n

toStr(e1) 7→ “n”
ToStr-Res

e1 7→ e′1
let x = e1 in e2 7→ let x = e′1 in e2

Let-Arg

e1 val

let x = e1 in e2 7→ [e1/x]e2
Let-Res

5

	Introduction
	Preliminaries
	Getting this homework
	Handing in this homework
	Layout of this homework

	synthtype
	Str, Plus, Len
	Let

	The E# Language
	Types
	Expressions
	Statics
	Dynamics

